Synthesis and characterization of binuclear arylthiolatoand phenylselenolato-bridged organoplatinum(II) complexes: crystal structure of $\left[\mathrm{Pt}_{2} \mathrm{Ph}_{2}(\mu-\mathrm{SPh})_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$

Vimal K. Jain
Chemistry Division, Bhabha Atomic Research Centre, Trombay, Bombay-400 085 (India)
S. Kannan
Fuel Chemistry Division, Bhabha Atomic Research Centre, Trombay, Bombay-400085 (India)

R.J. Butcher

Department of Chemistry, Howard University, Washington, DC 20059 (USA)

J.P. Jasinski

Keene State College, Keene, NH 03431 (USA)
(Received July 15, 1993)

Abstract

Binuclear organoplatinum(II) complexes of the type $\left[\mathrm{Pt}_{2} \mathrm{Ar}_{2}\left(\mu \text { - } \mathrm{EAr}^{\prime}\right)_{2}\left(\mathrm{PR}_{3}\right)_{2}\right]\left(\mathrm{Ar}=\mathrm{Ph}\right.$ or p-tol; $\mathrm{E}=\mathrm{S}$ or $\mathrm{Se} ; \mathrm{Ar}^{\prime}=\mathrm{Ph}$ or p-tol; $\mathrm{PR}_{3}=\mathrm{PPr}_{3} \mathrm{PBu}_{3}$ or $\mathrm{PMe}_{2} \mathrm{Ph}$) have been synthesized and characterized by elemental analysis and nuclear magnetic resonance (${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$) spectroscopy. Some of these complexes were isolated exclusively as the trans isomer, but others were present at a mixture of cis and trans isomers. An X-ray diffraction study of $\left[\mathrm{Pt}_{2} \mathrm{Ph}_{2}(\mu-\mathrm{SPh})_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$ has shown that it has sym-trans geometry, with a planar four-membered $\mathrm{Pt}_{2} \mathrm{~S}_{2}$ ring.

Key words: Platinum; Thiolate; Selenolate; Aryl

1. Introduction

Binuclear complexes of platinum(II) of the type $\left[\mathrm{Pt}_{2} \mathrm{X}_{2}(\mu-\mathrm{Y})(\mu-\mathrm{Z})\left(\mathrm{PR}_{3}\right)_{2}\right]$ are of much current interest [1]. Compounds containing μ-ER bridges ($\mathrm{E}=\mathrm{S}$, Se or Te) offer many structural possibilities [2]. For example, the four-membered " $\mathrm{Pt}_{2} \mathrm{YZ}$ " ring may adopt a planar or non-planar (bent or "butterfly") conformation (Scheme 1). As well as cis and trans isomerism, these complexes exhibit another type of geometrical iso-

[^0]merism, namely syn and anti. For $\mathrm{X}=\mathrm{Cl}, \mathrm{Y}=\mathrm{Z}=\mathrm{SR}$, it has been reported that alkylthiolato-bridged complexes prefer the cis geometry with a non-planar $\mathrm{Pt}_{2} \mathrm{~S}_{2}$ conformation [3]. The arylthiolato-bridged palladium(II) complexes are found to be trans species, with a planar four-membered ring [4]. However, the complex $\left[\mathrm{Pt}_{2} \mathrm{Cl}_{2}(\mu-\mathrm{SPh})_{2}\left(\mathrm{Ptol}_{3}\right)_{2}\right]$, despite having an arylthiolato bridge, exists as a mixture of cis and trans isomers [5]. Evidently subtle changes in the nature of the ligand trans to the thiolato group can determine the thermodynamically preferred configurations. We have now synthesized a series of complexes containing a strong trans-influencing X , an aryl group, trans to
bridging $\mathrm{Y}, \mathrm{Z}(\mathrm{Y}=\mathrm{Z}=$ arylthiolato or phenylselenolato group) and characterized the resulting complexes by nuclear magnetic resonance (NMR) spectroscopy.

2. Results and discussion

Arylthiolato- and phenylselenolato-bridged dinuclear organoplatinum(II) complexes of the type $\left[\mathrm{Pt}_{2} \mathrm{Ar}_{2}\left(\mu-\mathrm{EAr}^{\prime}\right)_{2}\left(\mathrm{PR}_{3}\right)_{2}\right]$ have been prepared by the following reactions:

$$
\begin{gather*}
{\left[\mathrm{Pt}_{2} \mathrm{Ar}_{2}(\mu-\mathrm{Cl})_{2}\left(\mathrm{PR}_{3}\right)_{2}\right]+2 \mathrm{Ar}^{\prime} \mathrm{SH}+\mathrm{py}(\text { excess }) \rightarrow} \\
{\left[\mathrm{Pt}_{2} \mathrm{Ar}_{2}\left(\mu-\mathrm{SAr}^{\prime}\right)_{2}\left(\mathrm{PR}_{3}\right)_{2}\right]+2 \mathrm{py} \cdot \mathrm{HCl}} \tag{1}\\
{\left[\mathrm{Pt}_{2} \mathrm{Ar}_{2}(\mu-\mathrm{Cl})_{2}\left(\mathrm{PR}_{3}\right)_{2}\right]+2 \mathrm{NaSePh} \rightarrow} \\
{\left[\mathrm{Pt}_{2} \mathrm{Ar}_{2}\left(\mu-\mathrm{SeAr}^{\prime}\right)_{2}\left(\mathrm{PR}_{3}\right)_{2}\right]+2 \mathrm{NaCl}} \tag{2}
\end{gather*}
$$

(where $\mathrm{Ar}=\mathrm{Ph}$ or $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ (p-tol); $\mathrm{Ar}^{\prime}=\mathrm{Ph}$ or p-tol; $\mathrm{PR}_{3}=\mathrm{P}^{\mathrm{n}} \mathrm{Pr}_{3} \mathrm{P}^{\mathrm{n}} \mathrm{Bu}_{3}$ or $\mathrm{PMe}_{2} \mathrm{Ph}$).

These complexes are cream to yellow air-stable crystalline solids. They can exist in cis and trans forms. Some, notably the bridged p-tolS compounds, could be isolated exclusively as the trans isomers, while others gave mixtures of both isomers, with the trans form predominating. It has been reported that ${ }^{1} J\left({ }^{195} \mathrm{Pt}-{ }^{31} \mathrm{P}\right)$ values are larger for the cis isomer than for the trans form, whereas ${ }^{3} J\left({ }^{195} \mathrm{Pt}-{ }^{31} \mathrm{P}\right)$ is larger for the trans (about 50 Hz) than for the corresponding cis isomer (15-20 Hz) [5]. Although ${ }^{3} J\left({ }^{195} \mathrm{Pt}^{-31} \mathrm{P}\right)$ values for the two isomers are not very different in the present case $\left(24-32 \mathrm{~Hz}\right.$) (Table 1), the higher values of ${ }^{1} J(\mathrm{Pt}-\mathrm{P})$ and
${ }^{3} J(\mathrm{Pt}-\mathrm{P})$ (about 30 Hz) are attributed to the cis isomer and smaller values of ${ }^{3} J\left({ }^{195} \mathrm{Pt}-{ }^{31} \mathrm{P}\right.$) (about 25 Hz) to the trans isomer.

The ${ }^{1} \mathrm{H}$ NMR spectra are consistent with the isomeric forms deduced from ${ }^{31} P$ NMR data. In general, the peak multiplicites and their integration are as expected. Each isomer of the complexes containing dimethylphenylphosphine exhibited a single doublet for PMe_{2} protons, indicating a planar conformation of the four-membered " $\mathrm{Pt}_{2} \mathrm{E}_{2}$ " ring. Complexes having a bent configuration, such as $\left[\mathrm{Pt}_{2} \mathrm{Cl}_{2}(\mu-\mathrm{X})(\mu-\mathrm{SR})\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$ ($\mathrm{R}=$ alkyl; $\mathbf{X}=\mathrm{Cl}$ or $\mathbf{S R}$) show two doublets for PMe_{2} protons [5,6], whereas complexes with planar conformation, as in case of arylthiolato-bridged complexes [4], exhibit a single doublet for PMe_{2} group [5]. Possibly the strong trans-influencing groups Ar or PR_{3}, trans to the bridging EAr' ligand, increases the rate of inversion at E (sulfur or selenium), leading to fluxionality in the molecule and resulting in a planar " $\mathrm{Pt}_{2} \mathrm{E}_{2}$ " conformation.

The low temperature ${ }^{1} \mathrm{H}$ NMR spectrum of trans$\left[\mathrm{Pt}_{2} \mathrm{Ph}_{2}(\mu-\mathrm{Stol})_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$ was recorded in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 500 MHz . The spectrum did not change when the temperature was lowered to $-60^{\circ} \mathrm{C}$ except for gradual shielding of the PMe_{2} ($\delta=1.20$ (d) ppm at room temperature (RT); $\delta=1.15$ (d) ppm at $-60^{\circ} \mathrm{C}$), the methyl protons of the $\mathrm{SC}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}-p$ (Stol) group ($\delta=2.27$ (s) ppm at $\mathrm{RT} ; \delta=2.22$ (s) ppm at $-60^{\circ} \mathrm{C}$) and the ortho protons of the Stol moiety ($\delta=7.26$ (d) ppm at RT; $\delta=7.20$ (d) ppm at $-60^{\circ} \mathrm{C}$). The changes in the chemical shifts are too small (shielding of about 0.05 ppm at

Trans ($M=P d$ OR Pt) Cis

Scheme 1.

TABLE 1. ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ nuclear magnetic resonance spectral data for $\left[\mathrm{Pt}_{2} \mathrm{Ar}_{2}(\mu-\mathrm{X})_{2}\left(\mathrm{PR}_{3}\right)_{2}\right]$ in CDCl_{3}

Complex		${ }^{31} \mathrm{P}\left({ }^{1} \mathrm{H}\right)$ NMR data			$\begin{aligned} & { }^{1} \mathrm{H} \text { NMR data }{ }^{\mathrm{a}}, \\ & \delta \\ & \text { (ppm) } \end{aligned}$
		δ (ppm)	$\begin{aligned} & { }^{1 J} \\ & \left({ }^{195} \mathrm{Pt}-{ }^{31} \mathrm{P}\right) \\ & (\mathrm{IIz}) \end{aligned}$	Other couplings (Hz)	
$\left[\mathrm{Pt}_{2} \mathrm{Ph}_{2}(\mu-\mathrm{Cl})_{2}\left(\mathrm{PPr}_{3}\right)_{2}\right]$		$\begin{aligned} & 0.8^{b} \\ & 0.3^{c} \end{aligned}$	$\begin{aligned} & 4748 \\ & 4757 \end{aligned}$		$\begin{aligned} & 0.90(\mathrm{br}), 1.45(\mathrm{br})(\mathrm{Pr}) ; 6.85(\mathrm{~m}), \\ & 7.25(\mathrm{~m})(\mathrm{Ph}) \end{aligned}$
$\left[\mathrm{Pt}_{2} \mathrm{Ph}_{2}(\mu-\mathrm{SePh})_{2}\left(\mathrm{PPr}_{3}\right)_{2}\right]$	trans	-0.8	3585	${ }^{3} J(\mathrm{Pt}-\mathrm{P})=26$	0.80(br), $1.30(\mathrm{~m})(\mathrm{Pr}) ; 6.50-8.00(\mathrm{~m}, \mathrm{Ph})$
$\left[\mathrm{Pt}_{2} \mathrm{Ph}_{2}(\mu-\mathrm{Cl})_{2}\left(\mathrm{PBu}_{3}\right)_{2}\right]$		$\begin{aligned} & 1.3^{\mathrm{b}} \\ & 1.0^{\mathrm{c}} \end{aligned}$	4754	-	$0.90(\mathrm{br}), 1.50(\mathrm{br})(\mathrm{Bu}) ; 6.80-7.35$ (br, m, ph)
$\left[\mathrm{Pt}_{2} \mathrm{Ph}_{2}(\mu-\text { Stol })_{2}\left(\mathrm{PBu}_{3}\right)_{2}\right]$	trans	2.8	3555	${ }^{3} J(\mathrm{Pt}-\mathrm{P})=24$	$\begin{aligned} & 0.80(\mathrm{br}), 1.20(\mathrm{br})(\mathrm{Bu}) ; 2.20(\mathrm{~s}, \mathrm{Me}) ; \\ & 6.60-8.80\left(\mathrm{br}, \mathrm{~m}, \mathrm{Ph}+\mathrm{C}_{6} \mathrm{H}_{4}\right) \end{aligned}$
$\left[\mathrm{Pt}_{2} \mathrm{Ph}_{2}(\mu-\mathrm{SePh})_{2}\left(\mathrm{PBu}_{3}\right)_{2}\right]$	trans cis	$\begin{array}{r} 0.1^{\mathrm{b}} \\ -0.7^{\mathrm{c}} \end{array}$	$\begin{aligned} & 3588 \\ & 3606 \end{aligned}$	$\begin{aligned} & { }^{3} J(\mathrm{Pt}-\mathrm{P})=25 \\ & { }^{3} J(\mathrm{Pt}-\mathrm{P})=32 \\ & { }^{4} J(\mathrm{P}-\mathrm{P})=6 \end{aligned}$	$0.78(\mathrm{br}), 1.29(\mathrm{br})(\mathrm{Bu}) ; 6.71-7.70(\mathrm{~m}, \mathrm{Ph})$
$\left[\mathrm{Pt}_{2}\right.$ tol $\left._{2}(\mu-\mathrm{Cl})_{2}\left(\mathrm{PBu}_{3}\right)_{2}\right]$	trans cis	$\begin{aligned} & 1.3^{b} \\ & 0.9^{\mathrm{c}} \end{aligned}$	$\begin{aligned} & 4757 \\ & 4770 \end{aligned}$	-	$\begin{aligned} & 0.85(\mathrm{br}), 1.45(\mathrm{br})(\mathrm{Bu}) ; 2.12(\mathrm{~s}, \mathrm{Me}) ; \\ & 6.62-7.50\left(\mathrm{~m}, \mathrm{C}_{6} \mathrm{H}_{4}\right) \end{aligned}$
$\left[\mathrm{Pt}_{2} \mathrm{tol}_{2}(\mu-\mathrm{SePh})_{2}\left(\mathrm{PBu}_{3}\right)_{2}\right]$	trans cis	$\begin{array}{r} 0.03^{b} \\ -0.8^{c} \end{array}$	$\begin{aligned} & 3597 \\ & 3606 \end{aligned}$	${ }^{3} J(\mathrm{Pt}-\mathrm{P})=25$	$0.80(\mathrm{br}), 1.25(\mathrm{br})(\mathrm{Bu}) ; 2.05(\mathrm{~s}, \mathrm{Me})$; $6.50-7.60\left(\mathrm{~m}, \mathrm{Ph}+\mathrm{C}_{6} \mathrm{H}_{4}\right)$
$\left[\mathrm{Pt}_{2} \mathrm{Ph}_{2}(\mu-\mathrm{Cl})_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]^{\text {d }}$		-13.1	4875	-	$\begin{aligned} & 1.54\left(\mathrm{~d}, J=11 \mathrm{~Hz}, \mathrm{PMe}_{2} ;{ }^{3} J(\mathrm{Pt}-\mathrm{H})=27 \mathrm{~Hz}\right)^{\mathrm{b}} ; \\ & 1.58\left(\mathrm{~d}, J=11 \mathrm{~Hz}, \mathrm{PMe}_{2} ;{ }^{3} J(\mathrm{Pt}-\mathrm{H})=27 \mathrm{~Hz}\right)^{\mathrm{c}} ; \\ & 6.70-7.80(\mathrm{br}, \mathrm{~m}, \mathrm{Ph}) \end{aligned}$
$\left[\mathrm{Pt}_{2} \mathrm{Ph}_{2}(\mu-\mathrm{SPh})_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$	trans	- 11.0	3642	${ }^{3} J(\mathrm{Pt}-\mathrm{P})=25$	$\begin{aligned} & 1.21\left(\mathrm{~d}, J=10.2 \mathrm{~Hz}, \mathrm{PMe}_{2} ;{ }^{3} J(\mathrm{Pt}-\mathrm{H})=25 \mathrm{~Hz}\right)^{\mathrm{b}} ; \\ & 1.33\left(\mathrm{~d}, J=10.2 \mathrm{~Hz}, \mathrm{PMe}_{2}\right){ }^{c} ; 6.53-7.39(\mathrm{br}, \mathrm{~m}, \mathrm{Ph}) \end{aligned}$
$\left[\mathrm{Pt}_{2} \mathrm{Ph}_{2}(\mu-\mathrm{Stol})_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$	trans	- 10.9	3616	${ }^{3} J(\mathrm{Pt}-\mathrm{P})=25$	$\begin{aligned} & 1.21\left(\mathrm{~d}, J=10 \mathrm{~Hz}, \mathrm{PMe}_{2} ;{ }^{3} J(\mathrm{Pt}-\mathrm{H})=41 \mathrm{~Hz}\right) ; \\ & 2.28(\mathrm{~s}, \mathrm{Me}) ; 6.66-7.30\left(\mathrm{~m}, \mathrm{Ph}+\mathrm{C}_{6} \mathrm{H}_{4}\right) \end{aligned}$
$\left[\mathrm{Pt}_{2} \mathrm{Ph}_{2}(\mu-\mathrm{SePh})\left({ }_{2}\left(\mathrm{PMe} \mathrm{C}_{2} \mathrm{Ph}\right)_{2}\right]\right.$	trans cis	$\begin{aligned} & -14.0^{\mathrm{b}} \\ & -13.5^{\mathrm{c}} \end{aligned}$	$\begin{aligned} & 3642 \\ & 3722 \end{aligned}$	${ }^{3} J(\mathrm{Pt}-\mathrm{P})=25$	$\begin{aligned} & 0.98\left(\mathrm{~d}, J=10.2 \mathrm{~Hz}, \mathrm{PMe}_{2} ;{ }^{3} \mathrm{~J}(\mathrm{Pt}-\mathrm{H})=21 \mathrm{~Hz}\right)^{\mathrm{b}} ; \\ & 1.11\left(\mathrm{~d}, J=10.2 \mathrm{~Hz}, \mathrm{PMe}_{2}\right)^{c} ; \\ & 6.76-7.84(\mathrm{br}, \mathrm{~m}, \mathrm{Ph}) \end{aligned}$
$\left[\mathrm{Pt}_{2} \mathrm{tol}_{2}(\mu-\mathrm{Cl})_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$	trans cis	$\begin{aligned} & -13.7^{\mathrm{b}} \\ & -13.9^{\mathrm{c}} \end{aligned}$	$\begin{aligned} & 4906 \\ & 4940 \end{aligned}$	-	$\begin{aligned} & 1.52\left(\mathrm{~d}, J=11 \mathrm{~Hz}, \mathrm{PMe}_{2} ;{ }^{3} J(\mathrm{Pt}-\mathrm{H})=27 \mathrm{~Hz}\right)^{\mathrm{b}} ; \\ & 1.57\left(\mathrm{~d}, J=11 \mathrm{~Hz}, \mathrm{PMe}_{2} ;{ }^{3} J(\mathrm{Pt}-\mathrm{H})=27 \mathrm{~Hz}\right)^{\mathrm{c}} ; \\ & 2.20(\mathrm{br}, \mathrm{~s}, \mathrm{Me}) ; 6.65-7.80\left(\mathrm{br}, \mathrm{~m}, \mathrm{Ph}+\mathrm{C}_{6} \mathrm{H}_{4}\right) \end{aligned}$
$\left[\mathrm{Pt}_{2} \mathrm{tol}_{2}(\mu-\mathrm{SPh})_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$	trans cis	$\begin{aligned} & -11.2^{b} \\ & -10.6^{c} \end{aligned}$	$\begin{aligned} & 3655 \\ & 3738 \end{aligned}$	${ }^{3} J(\mathrm{Pt}-\mathrm{P})=25$	$\begin{aligned} & 1.20\left(\mathrm{~d}, J=10.2 \mathrm{~Hz}, \mathrm{PMe}_{2} ;{ }^{3} J(\mathrm{Pt}-\mathrm{H})=21 \mathrm{~Hz}\right)^{\mathrm{b}} ; \\ & 1.30\left(\mathrm{~d}, J=10.2 \mathrm{~Hz}, \mathrm{PMe}_{2}\right)^{\mathrm{c}} ; 1.99(\mathrm{~s}, \mathrm{Me})^{\mathrm{c}} ; \\ & 2.09(\mathrm{~s}, \mathrm{Me})^{\mathrm{b}}(\mathrm{ratio}, 1: 2.4) ; \\ & 6.38-7.40\left(\mathrm{~m}, \mathrm{Ph}+\mathrm{C}_{6} \mathrm{H}_{4}\right) \end{aligned}$
$\left[\mathrm{Pt}_{2} \mathrm{tol}_{2}(\mu-\mathrm{Stol})_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$	trans	-11.2	3633	${ }^{3} J(\mathrm{Pt}-\mathrm{H})=25$	$1.22\left(\mathrm{~d}, J=10 \mathrm{~Hz}, \mathrm{PMe}_{2} ;{ }^{3} J(\mathrm{Pt}-\mathrm{H})=39 \mathrm{~Hz}\right) ;$ 2.11(s, Me, Pt tol); 2.28(s, Me, Stol); $6.50-7.31\left(\mathrm{~m}, \mathrm{Ph}+\mathrm{C}_{6} \mathrm{H}_{4}\right)$
$\left[\mathrm{Pt}_{2} \mathrm{tol}_{2}(\mu-\mathrm{SePh})_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$	$\operatorname{trans}^{\mathrm{e}}$ $c^{\text {c }}{ }^{\mathrm{e}}$	$\begin{aligned} & -13.9^{b} \\ & -13.5^{c} \end{aligned}$	$\begin{aligned} & 3656 \\ & 3738 \end{aligned}$	${ }^{3} J(\mathrm{Pt}-\mathrm{P})=24$	$\begin{aligned} & 1.32\left(\mathrm{~d}, J=10.2 \mathrm{~Hz}, \mathrm{PMe}_{2} ;{ }^{3} J(\mathrm{Pt}-\mathrm{H})=21 \mathrm{~Hz}\right)^{\mathrm{b}} ; \\ & 2.14(\mathrm{br}, \mathrm{~s}, \mathrm{Me}) ; 6.45-7.90\left(\mathrm{br}, \mathrm{~m}, \mathrm{Ph}+\mathrm{C}_{6} \mathrm{H}_{4}\right) \end{aligned}$
$\left[\mathrm{Pt}_{2} \mathrm{tol}_{2}(\mu-\mathrm{SePh})_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]^{\mathrm{a}}$		-13.7	3658		

${ }^{a}$ Recorded in CDCl_{3}; s, singlet; d, doublet; m, multiplet; br, broad. ${ }^{\mathrm{b}}$ Major isomer more than 70%. ${ }^{\mathrm{c}}$ Minor isomer less than 30%. ${ }^{\text {d }}$ In $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. ${ }^{\mathrm{e}}$ In $\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{C}_{6} \mathrm{D}_{6}$.
$-60^{\circ} \mathrm{C}$) to be attributed to different conformations. However, small changes of about 0.25 ppm , in ${ }^{19} \mathrm{~F}$ NMR chemical shifts for $\left[\mathrm{Pt}_{2}\left(\mu-\mathrm{SCF}_{3}\right)_{2}\left(\mathrm{PR}_{3}\right)_{4}\right]^{2+}$ complexes have been interpreted as due to syn and anti isomers [7].

To confirm the conclusions drawn from NMR data the structure of one representative complex was determined by X-ray diffraction. The molecular structure of $\left[\mathrm{Pt}_{2} \mathrm{Ph}_{2}(\mu-\mathrm{SPh})_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right.$] deputed in Fig. 1, shows that the compound has a sym-trans configuration. The
coordination around each platinum atom is distorted square planar. The central four-membered " $\mathrm{Pt}_{2} \mathrm{~S}_{2}$ " ring is planar, in contrast with non-planar bridges found in cis- $\left[\mathrm{Pt}_{2} \mathrm{Cl}_{2}(\mu-\mathrm{SEt})_{2}\left(\mathrm{PPr}_{3}\right)_{2}\right]$ [3], cis-$\left[\mathrm{Pt}_{2}(\mathrm{SBz})_{2}(\mu-\mathrm{SBz})_{2}\left(\mathrm{PMePh}_{2}\right)_{2}\right][8]$ and $\left[\mathrm{Pt}_{2}\left(\mathrm{NO}_{2}\right)_{2}(\mu-\right.$ $\left.\mathrm{SMe})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right][9]$. There is a centre of inversion in the middle of this four-membered ring. The geometry around sulfur is distorted tetrahedral, with relevant angles as follows: $\mathrm{Pt}-\mathrm{S}-\mathrm{Pt}^{*}, 97.2(1)^{\circ} ; \mathrm{Pt}-\mathrm{S}-\mathrm{C}(1 \mathrm{~A})$, $104.9(5)^{\circ} ; \mathrm{Pt}^{*}-\mathrm{S}-\mathrm{C}(1 \mathrm{~A}), 111.9(5)^{\circ}$. The phenyl groups of the SPh ligands adopt an anti configuration.

The Pt -S distance trans to phosphine (2.371(4) \AA) is slightly shorter than that trans to phenyl although the difference is barely significant. The $\mathrm{Pt}-\mathrm{S}$ distance trans to phosphine is in good agreement with the reported value $[3,8,9]$. Lengthening of the $\mathrm{Pt}-\mathrm{S}$ bond trans to the phenyl group reflects the strong trans influence of the aryl group [10]. The $\mathrm{Pt}-\mathrm{S}$ distances trans to $\mathrm{C}(1)$ and NO_{2}, known to be weaker trans-influencing ligands, are $2.27 \AA$ [3,5] and $2.29 \AA$ [9] respectively for thiolato-bridged platinum(II) complexes. The bond lengths $\mathrm{Pt}-\mathrm{P}(2.232(4) \AA)[3,5,8,9]$ and $\mathrm{Pt}-\mathrm{C}(2.00(2) \AA)$ [11] are in good agreement with the reported values. The average $\mathrm{P}-\mathrm{C}$ distance (1.82(2) \AA) is normal. The average $\mathrm{C}-\mathrm{C}$ distance in the phenyl rings attached to phosphorus, sulfur and platinum is $1.39 \AA$, with individual values ranging between $1.33(2)$ and $1.45(2) \AA$.

The $\mathrm{S}-\mathrm{Pt}-\mathrm{S}^{*}$ angle (Table 2) $\left(82.8(1)^{\circ}\right)$ is considerably smaller than the normal value, indicating strain in the four-membered ring. The $\mathrm{Pt}-\mathrm{S}-\mathrm{Pt}$ angle (97.2(1) ${ }^{\circ}$) is significantly larger than that reported for any thio-

TABLE 2. Selected bond distances and angles with estimated standard deviations for $\left[\mathrm{Pt}_{2} \mathrm{Ph}_{2}(\mu-\mathrm{SPh})_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]^{\mathrm{a}}$

	Bond distance $(\AA ⿴ 囗$		Bond distance (\AA)
$\mathrm{Pt}-\mathrm{S}$	$2.371(4)$	$\mathrm{S}-\mathrm{C}(1 \mathrm{~A})$	$1.78(2)$
$\mathrm{Pt}-\mathrm{S} *$	$2.386(4)$	$\mathrm{P}-\mathrm{C}(1)$	$1.84(2)$
$\mathrm{Pt}-\mathrm{P}$	$2.232(4)$	$\mathrm{P}-\mathrm{C}(2)$	$1.82(2)$
$\mathrm{Pt}-\mathrm{C}(1 \mathrm{~B})$	$2.00(2)$	$\mathrm{P}-\mathrm{C}(1 \mathrm{C})$	$1.81(1)$
	Bond angle		Bond angle
	$\left({ }^{\circ}\right)$		$115.4(4)$
$\mathrm{S}-\mathrm{Pt}-\mathrm{S}^{*}$	$82.8(1)$	$\mathrm{Pt}-\mathrm{P}-\mathrm{C}(1 \mathrm{C})$	115
$\mathrm{~S}-\mathrm{Pt}-\mathrm{P}$	$177.4(1)$	$\mathrm{Pt}-\mathrm{P}-\mathrm{C}(2)$	$115.1(7)$
$\mathrm{S}-\mathrm{Pt}-\mathrm{C}(1 \mathrm{~B})$	$89.7(4)$	$\mathrm{C}(1)-\mathrm{P}-\mathrm{C}(1 \mathrm{C})$	$102.8(7)$
$\mathrm{S}^{*}-\mathrm{Pt}-\mathrm{P}$	$98.5(1)$	$\mathrm{C}(1)-\mathrm{P}-\mathrm{C}(2)$	$104.7(9)$
$\mathrm{S}^{*}-\mathrm{Pt}-\mathrm{C}(1 \mathrm{~B})$	$171.6(4)$	$\mathrm{C}(1 \mathrm{C})-\mathrm{P}-\mathrm{C}(2)$	$104.1(8)$
$\mathrm{P}-\mathrm{Pt}-\mathrm{C}(1 \mathrm{~B})$	$89.2(4)$	$\mathrm{Pt}-\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})$	$120(1)$
$\mathrm{Pt}-\mathrm{S}-\mathrm{Pt} t^{*}$	$97.2(1)$	$\mathrm{Pt}-\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(6 \mathrm{~B})$	$120(1)$
$\mathrm{Pt}-\mathrm{S}-\mathrm{C}(1 \mathrm{~A})$	$104.9(5)$	$\mathrm{P}-\mathrm{C}(1 \mathrm{C})-\mathrm{C}(2 \mathrm{C})$	$122(1)$
$\mathrm{Pt}^{*}-\mathrm{S}-\mathrm{C}(1 \mathrm{~A})$	$111.9(5)$	$\mathrm{P}-\mathrm{C}(1 \mathrm{C})-\mathrm{C}(6 \mathrm{C})$	$119(1)$
$\mathrm{Pt}-\mathrm{P}-\mathrm{Cl}$	$113.3(6)$		

[^1]TABLE 3. Melting point and analytical data for $\left[\mathrm{Pt}_{2} \mathrm{Ar}_{2}(\mu\right.$ EAr') $\left(\mathrm{PR}_{3}\right)_{2}$]

Complex $^{\text {a }}$	Melting point $\left({ }^{\circ} \mathrm{C}\right)$	Analyses: found (calculated)	
	C	H	
$\left[\mathrm{Pt}_{2} \mathrm{Ph}_{2}(\mu-\mathrm{SePh})_{2}\left(\mathrm{PPr}_{3}\right)_{2}\right]$	$165-166$	$42.4(42.9)$	$5.4(5.3)$
$\left[\mathrm{Pt}_{2} \mathrm{Ph}_{2}(\mu-\mathrm{Stol})_{2}\left(\mathrm{PBu}_{3}\right)_{2}\right]$	$101-103$	$49.7(50.2)$	$6.5(6.6)$
$\left[\mathrm{Pt}_{2} \mathrm{Ph}_{2}(\mu-\mathrm{SePh})_{2}\left(\mathrm{PBu}_{3}\right)_{2}\right]$	$127-129$	$44.7(45.7)$	$5.8(5.9)$
$\left[\mathrm{Pt}_{2} \mathrm{tol}_{2}(\mu-\mathrm{SePh})_{2}\left(\mathrm{PBu}_{3}\right)_{2}\right]$	$115-117$	$46.6(46.6)$	$6.2(6.2)$
$\left[\mathrm{Pt}_{2} \mathrm{Ph}_{2}(\mu-\mathrm{SPh})_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$	$182-183$	$46.7(46.2)$	$4.1(4.1)$
$\left[\mathrm{Pt}_{2} \mathrm{Ph}_{2}\left(\mu-\mathrm{Stol}_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]\right.$	$203-204$	$47.2(47.3)$	$4.3(4.3)$
$\left[\mathrm{Pt}_{2} \mathrm{Ph}_{2}(\mu-\mathrm{SePh})_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$	$162-164$	$41.8(42.4)$	$3.8(3.7)$
$\left[\mathrm{Pt}_{2} \mathrm{Lol}_{2}(\mu-\mathrm{SPh})_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$	$158-160$	$47.0(47.3)$	$4.4(4.3)$
$\left[\mathrm{Pt}_{2} \mathrm{tol}_{2}(\mu-\mathrm{Stol})_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$	$192-194$	$47.8(48.3)$	$4.6(4.6)$
$\left[\mathrm{Pt}_{2} \mathrm{tol}_{2}(\mu-\mathrm{SePh})_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$	$160-162$	$43.2(43.4)$	$3.9(4.0)$

${ }^{\text {a }}$ All the complexes were recrystallized from dichloromethaneethanol with a $55-80 \%$ yield.
lato-bridged palladium(II) and platinum(II) complex [3-5,8,9].

3. Experimental details

The complexes $\left[\mathrm{Pt}_{2} \mathrm{Cl}_{2}(\mu-\mathrm{Cl})_{2}\left(\mathrm{PR}_{3}\right)_{2}\right]$ [12], cis$\left[\mathrm{PtCl}_{2}\left(\mathrm{CH}_{2}=\mathrm{CH}_{2}\right)\left(\mathrm{PR}_{3}\right)\right][13],\left[\mathrm{Pt}_{2} \mathrm{Ar}_{2}\left(\mu-\mathrm{Cl}_{2}\left(\mathrm{PR}_{3}\right)_{2}\right]\right.$ [14] and $\mathrm{Me}_{3} \mathrm{SnAr}$ [15] were prepared as described previously, and gave satisfactory microanalyses. Methods and spectroscopic techniques are similar to those used previously [16].

3.1. Preparation of $\left[\mathrm{Pt}_{2} \mathrm{tol}_{2}(\mu-\mathrm{SPh})_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$

Pyridine (0.2 ml) was added to a dichloromethane solution of $\left[\mathrm{Pt}_{2} \mathrm{tol}_{2}(\mu-\mathrm{Cl})_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right](120 \mathrm{mg}, 0.13$ $\mathrm{mmol})$ and the mixture was stirred for 30 min . Thiophenol ($28 \mathrm{mg}, 0.255 \mathrm{mmol}$) in benzene (5 ml) was then added and the mixture was stirred for 5 h at room temperature. The solvent was removed in vacuo and the residue extracted with dichloromethane. After evaporation of the extract, the residue was recrystallized from dichloromethane-ethanol to give cream crystals (95 mg (68%)). Other compounds were prepared similarly, and the pertinent data are summarized in Table 3.

3.2. Preparation of $\left[\mathrm{Pt}_{2} \mathrm{Ph}_{2}(\mu-\mathrm{SePh})_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$

To a vigorously stirred solution of NaSePh prepared from $\mathrm{Ph}_{2} \mathrm{Se}_{2}$ ($42 \mathrm{mg}, 0.135 \mathrm{mmol}$) in benzene-methanol by reduction with NaBH_{4} as described previously [13], was added under nitrogen, a suspension of $\left[\mathrm{Pt}_{2} \mathrm{Ph}_{2}(\mu-\right.$ $\left.\mathrm{Cl})_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right](121 \mathrm{mg}, 0.135 \mathrm{mmol})$ in benzene (10 ml). The mixture was stirred at room temperature for 5 h and the solvents then evaporated off in vacuo. The residue was extracted with dichloromethane, the extract was filtered and concentrated to 5 ml , and 1 ml of

TABLE 4. Crystal data and refinement details for $\left[\mathrm{Pt}_{2} \mathrm{Ph}_{2}(\mu\right.$ $\mathrm{SPh})_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$]

Empirical formula	$\mathrm{C}_{40} \mathrm{H}_{42} \mathrm{~S}_{2} \mathrm{P}_{2} \mathrm{Pt}_{2}$
Formula weight	1039.03
Crystal dimensions $(\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm})$	$0.4 \times 0.2 \times 0.6$
Crystal system	Monoclinic
Space group	$P 2_{1} / n(\mathrm{No} .14)$
$a(\AA)$	$9.802(2)$
$b(\AA)$	$8.490(2)$
$c(\AA)$	$22.788(4)$
$\beta\left({ }^{\circ}\right)$	$97.93(2)$
Z	2
$D_{\mathrm{c}}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.837
$F_{\text {ooo }}$	1000
$\mu(\mathrm{Mo} \mathrm{K} \alpha)\left(\mathrm{cm}^{-1}\right)$	77.35
$\lambda\left(\mathrm{Mo} \mathrm{K}_{\alpha}\right)(\AA)$	0.71069
Number of data collected	3769
Number of unique reflections	$3550\left(R_{\text {int }}=0.152\right)$
Number of observations $(I>3.00 \sigma(I))$	2420
Number of variables	293
R	0.065
R_{w}	0.071

ethanol was added. Slow evaporation afforded pale-yellow crystals (105 mg (67%)). Other complexes containing a bridging PhSe group were prepared similarly.

TABLE 5. Fractional coordinates and equivalent isotropic parameters for non-hydrogen atoms with estimated standard deviations in parentheses for $\left[\mathrm{Pt}_{2} \mathrm{Ph}_{2}(\mu-\mathrm{SPh})_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$

Atom	\boldsymbol{x}	y	z	$\begin{aligned} & B_{\mathrm{eq}} \\ & \left(\AA^{2}\right) \end{aligned}$
Pt	0.34807(5)	0.42134(6)	0.45802(2)	2.53(2)
S	0.4963(4)	$0.6411(4)$	0.4551(2)	2.8(1)
P	0.2008(4)	0.2220(5)	0.4611(2)	3.2(2)
C(1)	0.023(2)	0.287(2)	0.4643(9)	4.6(8)
C(1A)	0.573(1)	0.614(2)	0.3895(6)	3.3(6)
C(1B)	0.240(1)	0.491(2)	$0.3812(7)$	3.5(6)
C(1C)	0.235(1)	0.094(2)	0.5249(6)	2.7(5)
C(2)	0.188(2)	0.088(2)	0.3981(8)	6(1)
C(2A)	0.520(2)	0.695(2)	$0.3379(7)$	5.2(9)
C(2B)	0.266(2)	0.422(2)	$0.3272(7)$	4.8(8)
C(2C)	0.174(2)	0.118(2)	0.5762(7)	3.4(6)
C(3A)	0.581(2)	0.684(3)	0.2871(9)	7(1)
C(3B)	0.199(2)	0.475(3)	0.2723(9)	6(1)
C(3C)	0.208(2)	0.022(2)	0.6251(9)	4.4(8)
C(4A)	0.698(2)	0.587(3)	0.2885(9)	7(1)
C(4B)	0.111(2)	0.597(3)	0.2709(9)	7(1)
C(4C)	0.302(2)	-0.094(2)	0.6233(8)	4.5(7)
C(5A)	0.753(2)	0.511(3)	0.338(1)	6(1)
C(5B)	0.087(2)	0.671(3)	0.322(1)	6(1)
C(5C)	0.364(2)	-0.120(2)	0.576(1)	4.7(8)
C(6A)	0.694(2)	0.517(2)	0.3908(9)	5.2(9)
C(6B)	0.152(2)	0.618(2)	0.3803(8)	4.3(8)
C(6C)	0.329(2)	-0.029(2)	0.5243(8)	4.0(7)

3.3. Crystallography

Intensity data were collected from transparent prismatic crystal of $\mathrm{C}_{40} \mathrm{H}_{42} \mathrm{~S}_{2} \mathrm{P}_{2} \mathrm{Pt}$ at RT on a Rigaku AFC6S diffractometer fitted with graphite-monochromated Mo $\mathrm{K} \alpha$ radiation using an ω scan technique to a maximum 2θ value of 50.0°. Crystal data and refinement details are given in Table 4, and fractional atomic coordinates are listed in Table 5.

Three representative reflections were monitored after every 150 reflections and were unchanged throughout. Thus no decay correction was applied. Based on azimuthal scans of several reflections an empirical absorption correction was applied, resulting in transmission factors ranging from 0.30 to 1.00 . The data were corrected for Lorentz and polarization effects.

The structure was solved by direct methods [17]. The non-hydrogen atoms were refined anisotropically. The final cycle of full-matrix least-squares refinement converged with unweighted and weighted agreement factors of $R\left(=\Sigma| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right| / \Sigma\left|F_{\mathrm{o}}\right|\right)=0.065$ and $R_{w}\left(=\left[\Sigma_{w}\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2} / \Sigma_{w}\left(F_{\mathrm{o}}\right]^{1 / 2}\right)=0.071\right.$.

Neutral atom scattering factors were taken from the work of Cromer and Waber [18]. Anomalous dispersion effects were included in F_{c} [19]; the values for Δf^{\prime} and $\Delta f^{\prime \prime}$ were those of Cromer [20]. All calculations were performed using the TExSAN [21] crystallographic software package of the Molecular Structure Corporation. An ortep [22] plot of the molecule is shown in Fig. 1. Tables of thermal parameters, and hydrogen atom co-

Fig. 1. orter plot of $\left[\mathrm{Pt}_{2} \mathrm{Ph}_{2}(\mu-\mathrm{SPh})_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$ with numbering scheme for non-hydrogen atoms.
ordinates have been deposited with the Cambridge Crystallographic Data Centre.

Acknowledgments

The authors thank Dr. J.P. Mittal and Dr. D.D. Sood for their interest throughout this investigation. We are grateful to the Head of the Analytical Chemistry Division for providing microanalyses of the compounds. The facilities provided by the 500 MHz NMR National Facility supported by DST and located at TIFR are gratefully acknowledged. J.P.J. thanks the National Science Foundation-RUI program for providing funds to set up the New England Molecular Structure Centre.

References

1 V.K. Jain, Curr. Sci., 59 (1990) 143.
2 H.J. Gysling, Coord. Chem. Rev., 42 (1982) 133; I.G. Dance, Polyhedron, 5 (1986) 1037; P.J. Blower and J.R. Dilworth, Coord. Chem. Rev., 76 (1987) 121.
3 M.C. Hall, J.A.J. Jarvis, B.T. Kilbourn and P.G. Owston, J. Chem. Soc., Dalton Trans., (1972) 1544.
4 E.M. Padilla, J.A. Golen, P.N. Richman and C.M. Jensen, Polyhedron, 10 (1991) 1343
5 V.K. Jain, R.P. Patel and K. Venkatasubramanian, Polyhedron, 10 (1991) 851.

6 V.K. Jain and G.S. Rao, Inorg. Chim. Acta, 127 (1986) 161.
7 K.R. Dixon, K.C. Moss and M.A.R. Smith, J. Chem. Soc., Dalton Trans., (1974) 971.
8 P.H. Bird, U. Siriwardane, R.D. Lai and A. Shaver, Can. J. Chem., 60 (1982) 2075.
9 C.E. Briant, C.J. Gardner, T.S.A. Hor, N.D. Howells and D.M.P. Mingos, J. Chem. Soc., Dalton Trans., (1984) 2645.
10 T.G. Appleton, H.C. Clark and L.E. Manzer, Coord. Chem. Rev., 10 (1973) 335.
11 V.K. Jain, V.S. Jakkal and R. Bohra, J. Organomet. Chem., 389 (1990) 417; C. Panattoni, G. Bombieri, E. Forsellini, B. Crociani and U. Belluco, Chem. Commun., (1969) 187.
12 A.C. Smithies, M. Rycheck and M. Orchin, J. Organomet. Chem., 12 (1968) 199.
13 J. Chatt, N.P. Johnson and B.L. Shaw, J. Chem. Soc., (1964) 1662.
14 C. Eaborn, K.J. Odell and A. Pidcock, J. Chem. Soc., Dalton Trans., (1978) 1288.
15 C. Eaborn, H.L. Hornfeld and D.R.M. Walton, J. Organomet. Chem., 10 (1967) 529.
16 V.K. Jain and S. Kannan, Polyhedron, 11 (1992) 27.
17 C.J. Gilmore, J. Appl. Crystallogr., 17 (1984) 42; P.T. Beurskens, Tech. Rep. 1984/1, (1984) (Crystallography I ahoratory, Toernooiveld, Nijmegen).
18 D.T. Cromer and J.T. Waber, International Tables for X-ray Crystallography, Vol. 4, Kynoch, Birmingham, 1974, Table 2.2A.
19 J.A. Ibers and W.C. Hamilton, Acta Crystallogr., 17 (1964) 781.
20 D.T. Cromer, International Tables for X-ray Crystallography, Vol. 4, Kynoch, Birmingham, 1974, Table 2.3.1.
21 texsan - texray Structure Analysis Package, Molecular Structure Corporation, The Woodlands, TX, 1985.
22 C.K. Johnson, ortep il, Rep. ORNL-5138, 1976, (Oak Ridge National Laboratory, Oak Ridge, TN).

[^0]: Correspondence to: Dr. V.K. Jain.

[^1]: The symmetry element indicated by an asterisk $\left(^{*}\right)$ is $1-x, 1-y$, $1-z$.

